Home
Class 12
MATHS
In any !ABC if 2 cosB=a/c ,then the tria...

In any `!ABC` if 2 `cosB=a/c` ,then the triangle ,is

Promotional Banner

Similar Questions

Explore conceptually related problems

Fill int the blanks choosing correct answer from the bracket. In triangle ABC if cosA/a = cosB/b = cosC/c then the triangle is _____.

If in triangle ABC cosA/cosB =a/b then triangle ABC is

In any triangle ABC, sinA -cosB=cosC , then angle B is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in triangle ABC cosA+cosB+cosC=3/2 then prove that triangle is equilateral

In /_\ABC ,a/cosA=b/cosB=c/cosC.Show that the triangle is equilateral.

In any triangle ABC : If (cosA)/a= (cosB)/b , prove that the triangle is isosceles.

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is