Home
Class 12
MATHS
[" 31.If "xy^(y)=1" ,then prove that "],...

[" 31.If "xy^(y)=1" ,then prove that "],[qquad (dy)/(dx)=-(y(y+x log y))/(x(x+y log x))]

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^y.y^x = 1 , then prove that : dy/dx = (-y (y+x logx))/(x(y log x + x))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If x y\ log(x+y)=1 , prove that (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y)) .

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))