Home
Class 11
MATHS
lim(n->oo)(1^2+2^2+3^3+..........+n^2)/n...

`lim(n->oo)(1^2+2^2+3^3+..........+n^2)/n^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

lim (n rarr oo) (1 ^ (2) + 2 ^ (2) + 3 ^ (3) + ......... + n ^ (2)) / (n ^ (3))

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

Evaluate lim_(n->oo)[1^2/(n^3+1^3) + 2^2/(n^3+2^3) +3^2/(n^3+3^3)+…+1/(2n)]

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :