Home
Class 11
MATHS
x=1/sqrt(2-sqrt3) and y=1/sqrt(2+sqrt3)...

`x=1/sqrt(2-sqrt3) ` and `y=1/sqrt(2+sqrt3)` then the value of `(x-y)^2` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

x=(1)/(sqrt(2-sqrt(3))) and y=(1)/(sqrt(2+sqrt(3))) then the value of (x-y)^(2) equals

If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^(2)-y^(2))^(2) is

If x =1 + sqrt2 + sqrt3 and y =1 + sqrt2 -sqrt3 then find the value of (x^(2) +4xy +y^(2))/(x+y)

If x =1 + sqrt2 + sqrt3 and y =1 + sqrt2 - sqrt3, then the value of (x ^(2) + 4xy + y ^(2))/(x + y) is:

If x = 1/(2+sqrt3) , y =1/(2-sqrt3) , then the value of 1/(x+1) +1/(y+1) is

If x= 1/(2+sqrt3) and y = 1/(2-sqrt3) then evalue (1/(x+1) + 1/(y+1))

x + y = (4)/(sqrt3) and x - y = (2)/(sqrt3) , then the value of 4xy is