Home
Class 12
MATHS
[" If "vec a=(2i-4hat j+5hat k)" then fi...

[" If "vec a=(2i-4hat j+5hat k)" then find the value of "lambda" so that "lambdavec a" may be a uni "],[" vector."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a=(2hat i-4hat j+5hat k) then find the value of lambda so that lambdavec a may be a unit vector.

If vec a= hat i-\ hat j+7 hat k and vec b=5 hat i-\ hat j+lambda hat k , then find the value of lambda, so that vec a+ vec b and vec a- vec b are perpendicular vectors.

If vec a=widehat a=hat i-hat j+7hat k and vec b=5hat j-hat j+lambdahat k, then find the value of lambda so that vec a+vec b and vec a-vec b are perpendicular vectors.

If vec(a) = hat(i) - hat(j) + 7hat(k) and vec(b) = 5hat(i) - hat(j) + lambda hat(k) , then find the value of lambda so that vec(a) + vec(b) and vec(a) - vec(b) are perpendicular vectors.

If vec p=5 hat i+lambda hat j-3 hat k and vec q= hat i+3 hat j-5 hat k , then find the value of lambda , so that vec p+ vec q and vec p- vec q are perpendicular vectors.

If vec (a) = 3 hat (i) + 2 hat (j) + 9 hat (k) and vec(b) = hat (i) + lambda hat (j) + 3 hat (k) , then find the value of lambda so that the vectors (vec(a) + vec(b)) and (vec(a) - vec(b)) are perpendicular to each other .

The scalar product of the vector vec a= hat i+ hat j+ hat k with a unit vector along the sum of the vectors vec b=2 hat i+4 hat j-5 hat k\ a n d\ vec c=lambda hat i+2 hat j+3 hat k is equal to 1. Find the value of lambda and hence find the unit vector along vec b+ vec cdot

The scalar product of the vector vec a=hat i+hat j+hat k with a unit vector along the sum of the vectors vec b=2hat i+4hat j-5hat k and vec c=lambdahat i+2hat j+3hat k is equal to 1. Find the value of lambda and hence find the unit vector along vec b+vec r

The scalar product of the vector vec(a) = hat(i) + hat(j) + hat(k) with a unit vector along the sum of vectors vec(b) = 2hat(i) + 4hat(j) - 5hat(k) and vec(c ) = lambda hat(i) + 2hat(j) + 3hat(k) is equal to one. Find the value of lambda and hence find the unit vector along vec(b) + vec(c ) .