Home
Class 11
MATHS
8sin^(2)x+3cos^(2)x=5rArr cot x=...

8sin^(2)x+3cos^(2)x=5rArr cot x=

Promotional Banner

Similar Questions

Explore conceptually related problems

sin x + sin^(2) x + sin^(3) x = 1 rArr cos^(6) x - 4cos^(4) x + cos^(2) x =

The integral int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx is equal to (1) (1)/(3(1+tan^(3)x))+C(2)(-1)/(3(1+tan^(3)x))+C(3)(1)/(1+cot^(3)x)+C(4)(-1)/(1+cot^(3)x)+C

int(7cos^(3)x+8sin^(3)x)/(3sin^(2)x cos^(2)x)dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int (sin ^ (2) x cos ^ (2) x) / ((sin ^ (5) x + cos ^ (3) x sin ^ (2) x + sin ^ (3) x cos ^ (2) x + cos ^ (5) x) ^ (2)) dx

sin x=(2pq)/(p^(2)+q^(2))rArr cos ecx+cot x=

sin x=(2pq)/(p^(2)+q^(2))rArr cos ecx+cot x=

Ltquad x rarr0 (1-cos ^ (2) (sin x) -cos (sin ^ (2) x) + cos ^ (2) (sin x) cos (sin ^ (2) x)) / (x ^ ( 6)) =

Prove that, cot x cos^(2)x -tan x sin^(2)x = 2 cot 2x