Home
Class 12
MATHS
यदि bar(a) और bar(b) दो मात्रक सदिश हों,...

यदि `bar(a)` और `bar(b)` दो मात्रक सदिश हों, तो `bar(a)` और `bar(b)` के बीच का कोण क्या होगा, यदि `bar(a)-sqrt(2)bar(b)` एक मात्रक सदिश हो ?

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(a) and bar(b) are unit vectors. |bar(a)+bar(b)|=sqrt(3) then the value of (3bar(a)-4bar(b)).(2bar(a)+5bar(b)) = ……………

If bar(a) = 2bar(i) - 3bar(j) + bar(k) and bar(b) = bar(i) + 4bar(j) -2bar(k) , then find (bar(a) + bar(b))xx(bar(a)-bar(b))

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If |bar(a)| = 2, |bar(b)| = 5, and bar(a).bar(b) = 8 then |bar(a) - bar(b)| =__________

If |bar(a).bar(b)| = |bar(a) xx bar(b)| & bar(a). bar(b) lt 0 , then find the angle between bar(a) and bar(b) .

If (bar(a), bar(b))=60^(@)" then "(-bar(a), -bar(b))=

The non-zero vectors bar(a) , bar(b) , bar(c ) holds | (bar(a) .bar(b) ).bar( c) |=| bar(a) ||bar(b)|| bar( c) if