Home
Class 12
MATHS
A discontinuous function y=f(x) satisfyi...

A discontinuous function y=f(x) satisfying `x^(2)+y^(2)=4" is given by f(x)="`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of discontinuous functions =f(x) on [-2,2] satisfying x^(2)+y^(2)=4

A function y=f(x) satisfying f'(x)=x^(-(3)/(2)),f'(4)=2 and f(0)=0 is

Let 'f' be a non-zero real valued continuous function satisfying f(x + y) = f(x), f(y) . f(y) for all x, y in R if f(2) = 9 , then f(6) =

Determine the function satisfying f^(2)(x+y)=f^(2)(x)+f^(2)(y)AA x,y in R

Let f(x,y) be a periodic function satisfying f(x,y)=f(2x+2y,2y-2x) for all x,y Define g(x)=f(2^(x),0). Show that g(x) is a periodic function with period 12 .

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AA x,y in R and f(0)!=0 ,then f(x) is an even function f(x) is an odd function If f(2)=a, then f(-2)=a If f(4)=b, then f(-4)=-b

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot