Home
Class 12
MATHS
lim(x to 0)(x cot(4x))/(sin^(2) x cot^(2...

`lim_(x to 0)(x cot(4x))/(sin^(2) x cot^(2)(2x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(x rarr0)(x cot4x)/((cot^(2)2x)(sin^(2)x)) is equal to (A) 1 (B) 2(C)4(D)6

The value of {:(lim),(xrarr0):}(xcot(4x))/(tan^2(3x)cot^2(6x)) is equal to

The value of {:(lim),(xrarr0):}(xcot(4x))/(tan^2(3x)cot^2(6x)) is equal to

lim_(x-gt0) (xcot4x)/((cot^2 2x)(sin^2 x)) is equal to (A) 1 (B) 2 (C) 4 (D) 6

lim_(x→0) (xcot4x)/((cot^2 2x)(sin^2 x)) is equal to (A) 1 (B) 2 (C) 4 (D) 6

lim_(x rarr0)(cot x)^(sin x)