Home
Class 12
MATHS
If log(175)5x=log(343)7x, then the value...

If `log_(175)5x=log_(343)7x`, then the value of `log_(42)(x^(4)-2x^(2)+7)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)x=-log_((1)/(2))7, then the value of x is

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is

If log_(7)x = 4/3 , then the value of x is:

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

If log_(2)x + log_(2)x=7 , then =

If log_(2)7=x, then x is

If log_(5)log_(5)log_(2)x=0 then value of x is