Home
Class 12
MATHS
Let f : (-1,1) to R be continous funct...

Let `f : (-1,1) to R ` be continous function , if ` int _(0)^(sinx) f(t) dt = (sqrt(3))/2 x , "then " f ((sqrt(3))/2 )` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(sinx)^(1)t^(2) (f(t)) dt = (1-sinx) , then f ((1)/(sqrt(3))) is

If int_(sinx)^(1) t^(2) f(t) dt =1-sinx , then the value of f((1)/(sqrt(3))) is -

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If a continous function f satisfies int_0^f(x) t^2 dt=x^2(1+x) for all xge0 then f(2) is equal to

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then