Home
Class 11
MATHS
Prove that: sinpi/7+sin(2pi)/(7) + sin...

Prove that:
`sinpi/7+sin(2pi)/(7) + sin(8pi)/7 + sin(9pi)/7=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin ((pi)/(7))+sin((2pi)/(7)) + sin((8pi)/(7)) + sin((9pi)/(7))=0

sin "" (2pi)/(7) + sin "" (4pi)/(7) + sin "" (8pi)/(7) =

Show that : sin pi/7 *sin 2pi/7* sin3pi/7 = sqrt7/8

Show that: sin((2pi)/7)+ sin ((4pi)/7) + sin( (8pi)/7) = sqrt7/2 .

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

Prove that: sin^2pi/(18)+sin^2pi/9+sin^2(7pi)/(18)+sin^2(4pi)/9=2

Prove that: sin^2pi/(18)+sin^2pi/9+sin^2(7pi)/(18)+sin^2(4pi)/9=2

Prove that: sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/8+sin^(2)(7pi)/8=2

show that sin (2 (pi) / (7)) + sin (4 (pi) / (7)) + sin (8 (pi) / (7)) = (sqrt (7)) / (2)