Home
Class 10
MATHS
Prove: (1-tan^2A)/(cot^2A-1)=tan^2A...

Prove: `(1-tan^2A)/(cot^2A-1)=tan^2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: (1-tan^(2)A)/(cot^(2)A-1)=tan^(2)A

Prove that, ( 1-tan^2A) / (cot^2A-1) = tan^2A

(1+ tan^2 A)/(1+cot^2 A) = tan^2 A

Prove : (tan^2A)/(1+tan^2A)+(cot^2A)/(1+cot^2A)=1

Prove that (1-tan^2theta)/(cot^2theta-1)=tan^2theta,thetane45^@ .

Prove that (1+tan^(2)A)/(1+cot^(2)A)=((1-tan A)/(1-cot A))^(2)=tan^(2)A

Prove that tan(A+B)/cot(A-B)=(tan^2A-tan^2B)/(1-tan^2Atan^2B)

Prove the following identities, where the angles involves are acute angles for which the expressions are defined:(x) ((1+tan^2A)/(1+Cot^2A))^2=((1-tan^2A)/(1-Cot^2A))^2=tan^4A

prove (1 + tan^2A) / (1 + cot^2A) = [(1 - tan A) / (1 - cotA)] ^2 = tan^2A

prove that ((1-tan A)/(1-cot A))^(2)=tan^(2)A