Home
Class 12
MATHS
If f(x) = |(cos(x + alpha), cos(x+beta),...

If `f(x) = |(cos(x + alpha), cos(x+beta), cos(x + gamma)),(sin(x + alpha), sin(x+beta), sin(x + gamma)), (sin(beta - gamma), sin(gamma - alpha), sin(alpha - beta))|` and `f(0) = -2,` then `sum_(r=1)^30 |f(r)|` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = |(cos(x + alpha), cos(x+beta), cos(x + gamma)),(sin(x + alpha), sin(x+beta), sin(x + gamma)), (sin(beta - gamma), sin(gamma - alpha), sin(alpha - beta))| and f(2) = -2, then |sum_(r=1)^20 f(r)| equals

If f(x)=|(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta))| and f(2)=6, then find 1/5 sum_(r=1)^25 f(r) ,

If f(x)=|(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta))| and f(2)=6, then find 1/5 sum_(r=1)^25 f(r) ,

If f(x)=|(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta))| and f(2)=6, then find 1/5 sum_(r=1)^25 f(r),

" If " f(x) = |{:(cos(x+alpha),,cos(x+beta),,cos(x+gamma)),(sin(x+alpha) ,,sin(x+beta),,sin(x+gamma)),(sin(beta-gamma),, sin(gamma-alpha),,sin (alpha-beta)):}| and f(0)=2 theb find the value of Sigma_(r=1)^(30) | f(r )| .

" If " f(x) = |{:(cos(x+alpha),,cos(x+beta),,cos(x+gamma)),(sin(x+alpha) ,,sin(x+beta),,sin(x+gamma)),(sin(beta-gamma),, sin(gamma-alpha),,sin (alpha-beta)):}| and f(0)=2 theb find the value of Sigma_(r=1)^(30) | f(r )| .

" If " f(x) = |{:(cos(x+alpha),,cos(x+beta),,cos(x+gamma)),(sin(x+alpha) ,,sin(x+beta),,sin(x+gamma)),(sin(beta-gamma),, sin(gamma-alpha),,sin (alpha-beta)):}| and f(0)=2 theb find the value of Sigma_(r=1)^(30) | f(r )| .

If ,cos(x+alpha)cos(x+beta),cos(x+gamma)sin(x+alpha),sin(x+beta),sin(x+gamma)sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta) and f(0)=-2, then ,sum_(r=1)^(30)|f(r)| equals

If f(x)=|cos (x+alpha) , cos (x+beta) , cos (x+gamma)],[ sin (x+alpha) , sin (x+beta) ,sin (x+gamma) ],[ sin (beta-gamma), sin (gamma-alpha), sin (alpha-beta)]| and f(0)=-2 then overset(30)underset( r=1) sum |f(r)| equals