Home
Class 10
MATHS
Show that the matrices A=[(1, 2), (3, 1)...

Show that the matrices `A=[(1, 2), (3, 1)], B=[(1, -2), (-3, 1)]` satisfy commutative property AB=BA.

Promotional Banner

Similar Questions

Explore conceptually related problems

For the matrices A and B, A = [(2,1,3),(4,1,0)], B = [(1,-1),(0,2),(5,0)] , verify that (AB)' = B'A'

For the matrices A=[[-1, 2],[ 3, 4]] and B=[[2, 5],[ 3, 6]] , verify that (AB)^(-1)=B^(-1) A^-1?

If A = [(2,-1,2),(1,3,-4)], and B = [(1,-2),(-3,0),(5,4)] then verify that (AB)' = B'A'.

A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:} , verify (AB)'=B'A'

A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:} , verify (AB)'=B'A'

If A = [(5,1,1),(2,3,0)], B = [(2,3),(-1,1),(4,0)] , verify that (AB)' = B'A'.

IF A=[{:(2,-1,2),(1,3,-4):}] and B=[{:(1,-2),(-3,0),(5,4):}] then verify that (AB)'=B'A'.

If A=[[3],[2],[1]], B=[(1) (-2) (5)] then verify that (AB)'=B'A'.

If A=[(3,1,2),(1,2,3)] ,B= [(1,0),(2,1),(1,1)] find AB and BA.

Let A = [(1,3,2),(0,1,4)] and B = [(1,4),(0,1),(2,3)] . Show that AB ne BA