Home
Class 12
MATHS
For a in R (the set of all real number...

For `a in R` (the set of all real numbers), `a!=-1),` `(lim)_(n->oo)((1^a+2^a++n^a)/((n+1)^(a-1)[(n a+1)+(n a+2)+......(n a+n)])=1/(60.)` Then `a=` (a)`5` (b) 7 (c) `(-15)/2` (d) `(-17)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For a in R (the set of all real numbers),a!=-1)(lim)_(n rarr oo)((1^(a)+2^(a)++n^(a))/((n+1)^(a-1)[(na+1)+(na+2)+......(na+n)])=(1)/(60) Then a=(a)5 (b) 7(c)(-15)/(2) (d) (-17)/(2)

For a epsilonR (the set of all real numbers) a!=-1 , lim_(n to oo) ((1^(a)+2^(a)+………+n^(a)))/((n+1)^(a-1)[(na+1)+(n+2)+………..+(na+n)])=1/60 Then a=

For a epsilonR (the set of all real numbers) a!=-1, lim_(n to oo) ((1^(a)+2^(a)+………+n^(a)))/((n+1)^(a-1)[(na+1)+(na+2)+………..+(na+n)])=1/60 Then a=

For a in RR (the set of all real numbers), a ne-1,underset(n to oo)lim(1^(a)+2^(a)+…+n^(a))/((n+1)^(a-1)[(na+1)+(na+2)+…+(na+n)])=(1)/(60) Then a =

Find a for which lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)