Home
Class 12
MATHS
If A,B,C are the angles of a triangle, s...

If A,B,C are the angles of a triangle, show that,
(iii) `(cos A cos C + cos (A + B) cos(B + C))/(cos A sin C - sin (A + B) cos (B + C)) = cot C`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of a triangle, show that, (i) sin B cos(C +A) + cos B sin (C +A) = 0

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

If A,B, C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cos C+i sin C)

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

Prove that cos (A + B) cos C - cos (B + C) cos A = sin B sin (C - A)

If A, B, C are interior angle of triangle ABC then show that sin ((A+B)/2) + cos (( A+ B)/2) = cos (C/2) + sin (C/2)

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C