Home
Class 9
MATHS
If 2^(sin x+cos y)=1 and 16^(sin^(2)x+co...

If `2^(sin x+cos y)=1` and `16^(sin^(2)x+cos^(2)y)=4`, then find the value of `sin x` and `cos y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin (x+y)=cos (x-y), then the value of cos^2x is :

If sin^(4)x+cos^(4)y+2=4sin x cos y then the value of sin x+cos y is equal to

If cos x + cos y = 2, "then the value of" sin(x + y) is-

If sin^(-1) x + sin^(-1) y=pi/2 , then the value of cos^(-1) x +cos^(-1) y is :

If sin y=x sin(y+a) and (dy)/(dx)=(A)/(1+x^(2)-2x cos a) ,then the value of A if x=0 and y=0 is (A) 2 (B) cos a (C) sin a (D) sin2a

If sin x+sin y=3(cos y-cos x) then the value of sin 3 x+sin 3 y=

If cos^(-1) x + cos^(-1) y = (pi)/(4) , find the value of sin^(-1) x + sin^(-1) y .

Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 x sin^(3) y+3x cos^(2) y sin y=13 The value of sin^(2) y+2 cos^(2) y is

Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 x sin^(3) y+3x cos^(2) y sin y=13 The value of sin^(2)y + 2cos^(2) y is.

If sin^(-1)x+sin^(-1)y=(pi)/(2) and sin2x=cos2y then the value of x is and sin2x=cos2y