Home
Class 12
MATHS
If lim(xrarr0)(sin2x-asinx)/(x^(3)) exis...

If `lim_(xrarr0)(sin2x-asinx)/(x^(3))` exists finitely, then the value of a is

Promotional Banner

Similar Questions

Explore conceptually related problems

if lim_(x rarr0)(sin2x+a sin x)/(x^(3)) be finite,then the value of a is

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a and L

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?