Home
Class 10
MATHS
ABCD एक समचतुर्भुज है । सिद्ध कीजिए ...

ABCD एक समचतुर्भुज है । सिद्ध कीजिए कि `AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

ABCD is a rhombus.Prove that AB^(2) + BC^(2) +CD^(2) + DA^(2) = AC^(2) + BD^(2)

ABCD is a rhombus. Prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)= AC^(2)+BD^(2) .

ABCD is a rhombus.Prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)

सिद्ध कीजिए कि |vecA xx vecB|^(2) + |vecA * vecB|^(2) = (AB)^(2).

In AD bot BC , prove that AB^(2)+CD^(2)=BD^(2)+AC^(2)

In fig.if ,prove that AB^(2)+CD^(2)=BD^(2)+AC^(2)

In a rhombus prove that sum of squares of sides is equal to sum of square of diagonals or, In a rhombus ABCD prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)

In rhombus ABCD,show that 4AB^(2)=AC^(2)+BD^(2)

In Delta ABC, AD_|_ BC . Prove that AB^(2) - BD^(2) =AC^(2) -CD^(2)

In a Delta ABC , angleB is an acute-angle and AD bot BC Prove that : (i) AC^(2) = AB^(2) + BC^(2) - 2 BC xx BD (ii) AB^(2) + CD^(2) = AC^(2) + BD^(2)