Home
Class 10
MATHS
[" If "x=r sin theta,cos phi,y=sin theta...

[" If "x=r sin theta,cos phi,y=sin theta sin phi],[" and "z=r cos theta," prove that "x^(2)+y^(2)],[+z^(2)=r^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=r sin theta cos phi, y= r sin theta sin phi, z=r cos theta , prove that x^2+y^2+z^2=r^2 .

If x = r cos theta sin phi, y = r sin theta sin phi , and z= r cos phi , prove that x^(2)+y^(2) + z^(2)=r^(2) .

If x = rsin theta*cos phi , y = rsin theta*sin phi and z = rcos theta then prove that x^2 + y^2 + z^2 = r^2

If x=r cos theta cos phi, y=r cos theta sin phi, z=r sin theta , then prove that x^(2)+y^(2)+z^(2)=r^(2).

If x=r sin theta cos varphi,y=r sin theta sin varphi and z=r cos theta, then x^(2)+y^(2)+z^(2)=r^(2)(b)x^(2)+y^(2)-z^(2)=r^(2)(c)x^(2)-y^(2)+z^(2)=r^(2)(d)z^(2)+y^(2)-x^(2)=r^(2)

If x=r cos theta cos phi , y=r cos theta sin phi and z=r sin theta , then x^(2)+y^(2)+z^(2)=

If x= r sin theta cos phi , y=rsin theta sin phi and z=r costheta then the value of sqrt(x^2+y^2+z^2) will be

If x=r sin theta cos phi,y=r sin theta sin phi and z=r cos theta,thenx^(2)+y^(2)+ is independent of theta,phi(b)r,theta(c)r,phi(d)r

If x = r cos theta cos phi, y = r cos theta sin phiz = r sin theta, then x ^ (2) + y ^ (2) + z ^ (2) = (i) r ^ (2) (ii ) y ^ (2) (iii) x ^ (2) (iv) z ^ (2)

If x=r cos theta, y=r sin theta Prove that x^(2)+y^(2)=r^(2)