Home
Class 11
PHYSICS
vec A , vec B and vec C are three non-co...

` vec A , vec B and vec C` are three non-collinear, non co-planar vectors. What can you say about direction of ` vec A xx vec (B xx vec C`) ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

If vec a , vec b and vec c are three non-zero vectors, no two of which are collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c| .

If vec a , vec b and vec c are three non-zero vectors, no two of which are collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c| .

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a,vec b and vec c are three non co planar vectors,then the length of projection of vector a in the plane of the vectors b and c may be given by

If vec a, vec b, vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a + vec b) + (vec bxx vec c) + (vec b + vec c). ( vec c xx vec a) + (vec c + vec a). (vec axx vec b) is equal to

If vec a , vec ba n d vec c are three non-zero vectors, no two of which ar collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c|dot

Let vec(a), vec(b) and vec(c) be three non-zero vectors such that no two of them are collinear and (vec(a) xx vec(b)) xx vec(c) = (1)/(3) |vec(b)||vec(c)| vec(a) . If theta is the angle between vector vec(b) and vec(c) , then a value of sin theta is

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

If veca, vecb, vec c are three non coplanar vectors , then the value of (vec a.(vec b xx vec c) )/((vec c xx vec a).vec b) + ( vecb.(vec a xx vec c ))/(vec c.(vec a xx vec b)) is