Home
Class 12
MATHS
The value of int0^(2pi)[2sinx]dx ,w h e ...

The value of `int_0^(2pi)[2sinx]dx ,w h e r e[dot]` represents the greatest integral function, is (a)`(-5pi)/3` (b) `-pi` (c)`(5pi)/3` (d) `-2pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[x] denotes the greatest integer function.

The value of int_(0)^(2 pi)[2sin x]dx, where [.] represents the greatest integral function,is (a) (-5 pi)/(3)(b)-pi(c)(5 pi)/(3)(d)-2 pi

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.