Home
Class 12
MATHS
If y=(f(0)f(0)f)(x)andf(0)=0,f'(0)=2 the...

If `y=(f_(0)f_(0)f)(x)andf(0)=0,f'(0)=2` then `y'(0)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)*f(y) for all x y where f(0)!=0 .If f(5)=2 and f'(0)=3 then f'(5) is equal to

If y=f(x) satisfies f(x+1)+f(z-1)=f(x+z) AA x, z in R and f(0)=0 and f'(0)=4 then f(2) is equal to

Let f(x+y) = f(x) . f(y) for all x,y where f(0) ne 0. If f(5) =2 and f'(0) =3 , then f'(5) is equal to

If f (x+ y) = f(x) , f(y) , f(3) = 3 , f'(0) = 11 . Then f'(3) is equal to

If y=f(x) is the solution of differential equation , e^y((dy)/(dx)-2)=e^(3x) such that f(0)=0 , then f(2) is equal to :

A function f:RtoR is such that f(x+y)=f(x).f(y) for all x.y inR and f(x)ne0 for all x inR . If f'(0)=2 then f'(x) is equal to

If y = f (x) is the solution of difierential equation. e ^(y) ((dy)/(dx )-2)=e ^(3x) such that f(0) =0, then f (2) is equal to :

If f(0) = 0 , f' ( 0 ) = 2 and y = f ( f ( f ( f ( x ) ) ) ) , then y'( 0 ) is equal to