Home
Class 12
MATHS
(dy)/(dx)+(1)/(x)=(e^(y))/(x^(2))...

(dy)/(dx)+(1)/(x)=(e^(y))/(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(e^(y))/(x^(2))-(1)/(x)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

Find (dy)/(dx) of y=e^((x^(2))/(1+x^(2)))

(dy)/(dx)=e^(x+y)+x^(2)e^(y)

If y(x) is the solution of the differential equation ( dy )/( dx) +((2x+1)/(x))y=e^(-2x), x gt 0 , where y(1) = (1)/(2) e^(-2) , then

If y(x) is the solution of the differential equation ( dy )/( dx) +((2x+1)/(x))y=e^(-2x), x gt 0 , where y(1) = (1)/(2) e^(-2) , then