Home
Class 12
MATHS
" I."int(1-x^(2))^(3)dx" on "(-1,1)...

" I."int(1-x^(2))^(3)dx" on "(-1,1)

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(1-x^(2))/(x(1-2x))dx

(1) I=int(1)/((x^(2)+1)^(2))dx

I=int(2x^(3)+4x+1)/(x)dx

l_(1)=int_(0)^(1)3^(x^(2))dx,l_(2)=int_(0)^(1)3^(x^(3))dx,l_(3)=int_(1)^(2)3^(x^(2))dx,l_(4)=int_(1)^(2)3^(x^(3))dx then (i)I_(1)>I_(2)(ii)I_(2)>I_(1)(iii)I_(3)>I_(4)(iv)I_(4)>I_(3)

(i) int((x+3))/(x+1)dx

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

If I_(1) = int_(0)^(1) 2^(x^(2))dx, I_(2) = int_(0)^(1) 2^(x^(3))dx , I_(3) = int_(1)^(2) 2^(x^(2))dx, I_(4)=int_(1)^(2) 2^(x^(3))dx then

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

I=int(1)/(x^(3)+x^(2)+x+1)dx