Home
Class 9
MATHS
If a^m a^n =a^(mn), then express m in te...

If `a^m a^n =a^(mn)`, then express m in terms of n.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(m^n)= (a^m)^n , then express m in terms of n.

If (a^(m))^(n)=a^(m^(n)) , then express m in the terms of n is (agt0, ane0, mgt1, ngt1)

If (a^(m))^(n)=a^(m^(n)) , then express 'm' in the terms of n is (agt0, ane0, mgt1, ngt1)

If (a^(m))^(n)=a^(m^(n)) , then express 'm' in the terms of n is (agt0, ane0, mgt1, ngt1)

If log_(a)m = n , express a^(n-1) in terms of a and m.

If x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n)) , express n in the terms of x and m .

If a^m .a^n = a^(mn) , then m(n - 2) + n(m- 2) is :

Given log x=m+n and log y=m-n then express the value of log((10)/(y^(2))) in terms of m and n

We know that (a^m)^n = a^(mn) Let a^m = x , then m = log_ax x^n = a^(mn) , then log_ax^n= mn = n log_ax (why?)