Home
Class 12
MATHS
If A=[(a,b),(0,c)] then A^-1 +(A-aI)(...

If `A=[(a,b),(0,c)]` then `A^-1 +(A-aI)(A-cI)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(0, 1,0),(0, 0,1),(-c,-b,-a)] then A^(3)+aA^(2)+bA+cI is

If A=[(10,6),(-4,8)] and I_2=[(1,0),(0,1)] then AI_2 is equal to a) [(10,6),(-4,8)] b) [(21,-16),(-12,15)] c) [(1,1),(1,1)] d) [(1,0),(0,1)]

If S=[(0,1,1),(1,0,1),(1,1,0)], A=(1)/(2)[(b+c,c-a,b-a),(c-b,c+a,a-b),(b-c,a-c,a+b)] , then SAS^(-1)=

If A^(2)-A+I=0, then the invers of A is A^(-2) b.A+I c.I-A d.A-I

If {:A=[(0,1),(1,0)]:} ,I is the unit matrix of order 2 and a, b are arbitray constants, then (aI +bA)^2 is equal to

If {:A=[(0,1),(1,0)]:} ,I is the unit matrix of order 2 and a, b are arbitray constants, then (aI +bA)^2 is equal to

If I=[[1,0],[0,1]] , E=[[0,1],[0,0]] then (aI+bE)^(3)=

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If a,b,c are real, a ne 0, b ne 0, c ne 0 and a+b + c ne 0 and 1/a + 1/b + 1/c = 1/(a+b+c) , then (a+b) (b+c)(c+a) =