Home
Class 12
MATHS
x^(2)e^(x)...

x^(2)e^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

int (e^(x)dx)/(e^(2x)+e^(x)-2)

Let f,g and h be real-valued functions defined on the interval [0,1] by f(x)=e^(x^2)+e^(-x^2) , g(x)=x e^(x^2)+e^(-x^2) and h(x)=x^2 e^(x^2)+e^(-x^2) . if a,b and c denote respectively, the absolute maximum of f,g and h on [0,1] then

Let f,g and h be real-valued functions defined on the interval [0,1] by f(x)=e^(x^2)+e^(-x^2) , g(x)=x e^(x^2)+e^(-x^2) and h(x)=x^2 e^(x^2)+e^(-x^2) . if a,b and c denote respectively, the absolute maximum of f,g and h on [0,1] then

Let f,g and h be real-valued functions defined on the interval [0,1] by f(x)=e^(x^2)+e^(-x^2) , g(x)=x e^(x^2)+e^(-x^2) and h(x)=x^2 e^(x^2)+e^(-x^2) . if a,b and c denote respectively, the absolute maximum of f,g and h on [0,1] then

Let f,g and h be real-valued functions defined on the interval [0,1] by f(x)=e^(x^2)+e^(-x^2) , g(x)=x e^(x^2)+e^(-x^2) and h(x)=x^2 e^(x^2)+e^(-x^2) . if a,b and c denote respectively, the absolute maximum of f,g and h on [0,1] then

The inverse of the function f(x)=(e^(x)-2e^(-x))/(e^(x)+2e^(-x))+1 is

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to x:

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))