Home
Class 12
MATHS
A and B are square matrices and A is non...

A and B are square matrices and A is non-singular matrix, then `(A^(-1) BA)^n,n in I'` ,is equal to (A) `A^-nB^nA^n` (B) `A^nB^nA^-n` (C) `A^-1B^nA` (D) `A^-nBA^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are square matrices of same order then (A^(-1)BA)^(n) = ………… , n inN .

If A and B are square matrices of the same order and A is non-singular,then for a positive integer n,(A^(-1)BA)^(n) is equal to A^(-n)B^(n)A^(n) b.A^(n)B^(n)A^(-n) c.A^(-1)B^(n)A d.n(A^(-1)BA)

If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^

If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^

If A and B are square matrices of the same order and A is non-singular, then for a positive integer n, (A^(-1)B A)^n is equal to

Let A;B;C be square matrices of the same order n. If A is a non singular matrix; then AB=AC then B=C

Let A; B; C be square matrices of the same order n. If A is a non singular matrix; then AB = AC then B = C

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n