Home
Class 11
MATHS
If un=sin^("n")theta+cos^ntheta, then pr...

If `u_n=sin^("n")theta+cos^ntheta,` then prove that `(u_5-u_7)/(u_3-u_5)=(u_3)/(u_1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_4-u_6)/(u_2-u_4)=1/2 .

If u_(n)=sin^(n)theta+cos^(n)theta, then prove that (u_(5)-u_(7))/(u_(3)-u_(5))=(u_(3))/(u_(1))

If u_(n)=sin^(n)alpha+cos^(n)alpha , then prove that 2u_(6)-3u_(4)+1=0 .

If u_(n) = cos^(n) theta + sin^(n) theta then 2u_(6)-3u_(4)=

If u_(n)=2Cos^(n) theta then show that u_(1)u_(n)-u_(n-1)= u_(n+1)

If u_(n)=int_(0)^((pi)/(2))theta sin^(n)theta d theta and n>=1, then prove that u_(n)=((n-1)/(n))u_(n-2)+(1)/(n^(2))

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to.......... A) -1 B) 12 sin ^(2) theta cos ^(2) theta C) 1 D) 12 tan ^(2) theta cos ^(2) theta

If : sin^(6)theta+cos^(6)theta=1-3u^(2)+3u^(4), "then" : u =