Home
Class 12
MATHS
[" 1.The vector equation of two lines ar...

[" 1.The vector equation of two lines are: "],[qquad vec r=(hat i+2hat j+3hat k)+lambda(hat i-3hat j+2hat k)" and "vec r=(4hat i+5hat j+6hat k)+mu(2hat i+3hat j+hat k)]

Promotional Banner

Similar Questions

Explore conceptually related problems

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

Find the shortest distance between the lines whose vector equations are vec r=(hat i+2hat j+3hat k)+lambda(hat i-3hat j+2hat k) and vec r=4hat i+5hat j+6hat k+mu(2hat i+3hat j+hat k)

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and ,vec r,=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines vec r = (hat i + 2 hat j + hat k) + lambda (hat i - hat j + hat k) and vec r = ( 2 hat i - hat j - hat k) + mu ( 2 hat i + hat J + 2 hat k)

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

Find the vector and cartesian equation of a plane containing the two lines vec r=(2hat i+hat j-3hat k)+lambda(hat i+2hat j+5hat k) and vec r=(3hat i+3hat j+2hat k)+mu(3hat i-2hat j+5hat k) Also,show that the line vec r=(2hat i+5hat j+2hat k)+P(3hat i-2hat j+5hat k) lies in the plane.