Home
Class 12
MATHS
int(10x^(9)+10^(x)log(e^(10)dx))/(10^(x)...

int(10x^(9)+10^(x)log_(e^(10)dx))/(10^(x)+x^(10))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))dx

int(10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))dx=

int(10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))dx=

Evaluate: (i) int(10x^(9)+10^(x)(log)_(e)10)/(10^(x)+x^(10))dx (ii) int(1-sin2x)/(x+cos^(2)x)dx

int (10x^(9)+10^(x) log (10))/(10^(x)+x^(10)) dx

Integrate the following with respect to x. (10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))

Integrate 1. (e^(x)-e^(-x))/(e^(x)+e^(-x)) 2. (10x^(9)+10^(x).log_(e)10)/(10^(x)+x^(10))

int(10x^(9)+10x^(x)log_(e^(10))dx)/(x^(10)+10^(x)) equals (A) 10^(x)-x^(10)+C (B) ( C) log(10^(x)+x^(10))+C