Home
Class 12
MATHS
यदि x^(y)=e^(x-y), साबित करें कि (dy)...

यदि `x^(y)=e^(x-y)`, साबित करें कि `(dy)/(dx)=(logx)/((1+logx)^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)