Home
Class 12
MATHS
Show that vectors |barb|bara+|bara|barb ...

Show that vectors `|barb|bara+|bara|barb and |barb||bara-|bara|b` are orthogonal.

Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors bara,barb and bara+barb are

The vectors bara,barb and bara+barb are

If bara,barb,barc are non-coplaner, then show that the vectors bara -bar b , barb + barc ,bar c + bara are coplanar

[[bara-barb, barb-bara, barc-bara]]=

If theta is the angle between any two vectors bara and barb and | bara xx barb | = | bara.barb | , then value of theta is

[bara barb barc]+[bara barc barb] =

Let bara and barb be two non-collinear unit vectors. If baru=bara-(bara.barb)barb and barv=bara xx barb , then |barv|=

IF the vector bara and barb are non-coplanar then bara/|bara|+barb/|barb| is