Home
Class 9
MATHS
" v) "x tan x sec^(2)x...

" v) "x tan x sec^(2)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is

Evalute the following integrals int (sec^(2) "x tan x")/(sec^(2) x + tan^(2) x) dx

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

int(4sec^(2)x tan x)/(sec^(2)x+tan^(2)x)dx=log|1+f(x)|+C

If int (4 sec^(2)" x tan x")/(sec^(2) " x + tan"^(2) x)" dx = log " |1 + f(x) | + C then f(x) =

int_(0)^( pi)(x sec x tan x)/(1+sec^(2)x)dx=(pi^(2))/(4)

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx