Home
Class 11
MATHS
Prove log a + log a^(2) + "log" a^(3) +...

Prove log a + log `a^(2) + "log" a^(3) `+……..+ log `a^(n)`
=` (n (n + 1))/(2)` log a

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of log m + log m^(2) + log m^(3) +……. + log m^(n) :

Prove that log a+log a^(2)+loga^(3)+….+loga^(n)=(n(n+1))/(2)loga

Prove that log a+log a^(3)+loga^(5)+….+loga^(2n-1)=n^(2) loga

Prove that : (vi) log_(a)x + log_(a^2)x^(2) + log_(a^3)x^(3) + ………….+ log_(a^n)x^(n) = log_(a)x^(n)

If log a+log (a^(2)/b)+log (a^(3)/b^(2))+.. .. n terms =(n)/(2)(P log a+Q log b) then P Q=

2(log a+log a^(2)+log a^(3)+log a^(4)+............+log a^(n)) is equal to

If a_(n)( gt 0) be the n^(th) term of a G.P. then |(log a_(n), log a_(n+1), log a_(n+2)),(log a_(n+3), loga_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7), log a_(n+8))| is equal to

Show that log_a N + log (1)/(a)N=0