Home
Class 12
MATHS
" 15."sqrt(sin x)...

" 15."sqrt(sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

y=sqrt [[sin x + sqrt{{sin x + sqrt ((sin x +1…)}}] or y = sqrt(sin x +y) or y^2 = sin x + y Differentiating w.r. to x.

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

Prove that : cot^-1[(sqrt(1+sin x) + sqrt(1-sin x))/(sqrt1+sin x + sqrt(1-sin x))] = x/2, x in (0, pi/4)

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Differentiate w.r.t x : tan^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < x < pi/2