Home
Class 12
MATHS
If f(x)=x^3+bx^3+cx+d and 0 lt b^2 lt c ...

If `f(x)=x^3+bx^3+cx+d and 0 lt b^2 lt c "then in" (-oo,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+bx^(2)+cx+d and 0 lt b^(2) lt c , then in (-oo, oo), f(x) :

If f(x)=x^(3)+bx^(2)+cx+dand 0 ltb^(2)ltc, then in (-oo,oo)

If f(x)=x^3+bx^2+cx+d and 0ltb^2ltc then in (-oo,oo)

If f(x) = x^(3) + bx^(2) + cx + d and 0 lt b^(2) lt c , then in (-oo, oo) , a)f(x) is a strictly increasing function b)f(x) has local maxima c)f(x) is a strictly decreasing function d)f(x) is bounded

If F(x)=x^(3)+bx^(2)+cx+dand0ltb^(2)ltc , then in (-oo,oo)

If f(x) = x^(3) + bx^(2) + cx +d and 0lt b^(2) lt c .then in (-infty, infty)

Let f(x)=x^(3) + bx^(2) +cx +d, 0 lt b^(2) lt c . Then f(x)-

If (x)=x^(3)+bx^(2)+cx+d and 0