Home
Class 11
MATHS
a^(3) sin (B-C) + b^(3) sin (C-A) + c^(3...

`a^(3) sin (B-C) + b^(3) sin (C-A) + c^(3) sin (A - B) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In /_\ ABC , prove that a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B) = 0

Simplify: sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)

Simplify: sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)

Show that in a triangle ABC, a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

In any triangle A B C , prove that: \ a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

a^(3)( sin^(3)B-sin^(3)C) + b^(3) (sin^(3)C-sin^(3)A) + c^(3)( sin^(3)A-sin^(3)B) = 0

(ix) (a^(2) sin (B-C))/(sinA) + (b^(2) sin (C-A))/(sin B) + (c^(2) sin (A-B))/(sin C)=0

In a DeltaABC , prove that : sin3A sin(B-C)+sin3B sin(C-A) + sin3C sin (A-B)=0 .