Home
Class 12
MATHS
If veca,vecb,vecc be three non coplanar ...

If `veca,vecb,vecc` be three non coplanar vectors show that `vecbxxvecc,veccxxveca,vecaxxvecb` are non coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecb vecb+vecc vecc+veca] x+1 +[vecb-vecc vecc -veca veca -vecb] =0 has roots (A) real and distinct (B) real (C) equal (D) imaginary

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If veca+vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecbvecb+veccvecc+veca] x+1 +[vecb-veccvecc -vecc-vecaveca -vecb] =0 has roots

If veca+vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecbvecb+veccvecc+veca] x+1 +[vecb-veccvecc -vecc-vecaveca -vecb] =0 has roots

If veca+vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecbvecb+veccvecc+veca] x+1 +[vecb-veccvecc -vecc-vecaveca -vecb] =0 has roots

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .