Home
Class 11
MATHS
If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then...

If `z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4,` then `a r g(z)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

If z(2-i2sqrt(3))^(2)=i(sqrt(3)+i)^(4), then amplitude of z is

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is