Home
Class 12
PHYSICS
The differential equation of a particle ...

The differential equation of a particle performing a S.H.M. is `(d^(2)x)/(dt^(2))+ 64x=0`. The period of oscillation of the particle is

Promotional Banner

Similar Questions

Explore conceptually related problems

Kinetic energy of a particle performing S.H.M.

The amplitude of particle performing S.H.M. is

Kinetic energy of the particle performing S.H.M. is

Passage XI) The differential equation of a particle undergoing SHM is given by a(d^(2)x)/(dt^(2)) +bx = 0. The particle starts from the extreme position. The time period of osciallation is given by

Passage XI) The differential equation of a particle undergoing SHM is given by a(d^(2)x)/(dt^(2)) +bx = 0. The particle starts from the extreme position. The time period of osciallation is given by

Passage XI) The differential equation of a particle undergoing SHM is given by a(d^(2)x)/(dt^(2)) +bx = 0. The particle starts from the extreme position. The ratio of the maximum acceleration to the maximum velocity of the particle is

Passage XI) The differential equation of a particle undergoing SHM is given by a(d^(2)x)/(dt^(2)) +bx = 0. The particle starts from the extreme position. The ratio of the maximum acceleration to the maximum velocity of the particle is

Differential equation for a particle performing linear SHM is given by (d^(2)x)/(dt^(2))+3xx=0 , where x is the displacement of the particle. The frequency of oscillatory motion is