Home
Class 12
MATHS
Let I1= int0^1 (1-x^50)^100 dx and I2= i...

Let `I_1= int_0^1 (1-x^50)^100 dx `and `I_2= int_0^1(1-x^50)^101 dx and` `I_1= lamda ``I_2`, then `lamda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((5050)int_0^1(1-x^50)^100 dx)/(int_0^1 (1-x^50)^101 dx) is

Evaluate: 5050(int_0^1(1-x^(50))^(100)dx)/(int_0^1(1-x^(50))^(101)dx)

If I_(1)=int_(0)^(1)(1-x^(50))^(100)dx and I_(2)=int_(0)^(1)(1-x^(50))^(101)dx, If I_(2)=(alpha)/(beta)I_(1) ( alpha,beta are coprime) then beta-alpha

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

If I_1=int_0^1(e^x)/(1+x) dx aand I_2=int_0^1 x^2/(e^(x^3)(2-x^3)) dx then I_1/I_2 is

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to