Home
Class 12
MATHS
If x=t log t ,y =t^(t) ,then (dy)/(dx)=...

If ` x=t log t ,y =t^(t) ,then (dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = log t^2 , y = log t^3 , then (dy)/(dx) is

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

If x= sin (log t ),y =log (sin t ) ,then (dy)/(dx)=

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

x=e^(t)log t y=t log t then dy/dx

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x=at,y=(a)/(t)," then "(dy)/(dx)=

If y=t^(2)-t+1," then: "(dy)/(dx)=