Home
Class 11
PHYSICS
For a particle moving along a straight l...

For a particle moving along a straight line, the displacement x depends on time `t` as `x=At^(3)+Bt^(2)+Ct+D`. The ratio of its initial velocity to its initial acceleration depends on:

Promotional Banner

Similar Questions

Explore conceptually related problems

For a particle moving along a straight line, the displacement x depends on time t as x = alpha t^(3) +beta t^(2) +gamma t +delta . The ratio of its initial acceleration to its initial velocity depends

For a particle moving along a straight line, the displacement x depends on time t as x = alpha t^(3) +beta t^(2) +gamma t +delta . The ratio of its initial acceleration to its initial velocity depends

For a particle moving in a straight line, the displacement of the particle at time t is given by S=t^(3)-6t^(2) +3t+7 What is the velocity of the particle when its acceleration is zero?

For a particle moving in a straight line, the displacement of the particle at time t is given by S=t^(3)-6t^(2) +3t+7 What is the velocity of the particle when its acceleration is zero?

For a particle moving in a straight line, the displacement of the particle at time t is given by S=t^(3)-6t^(2) +3t+7 What is the velocity of the particle when its acceleration is zero?

The position of a particle moving on a straight line depends on time t as x=(t+3)sin (2t)

Displacement of a particle moving in a straight line is represented as follows: x=at^(3)+bt^(2)+ct+d Ratio of initial velocity to initial acceleration depends.

(a) If the initial velocity of a particle is u and collinear acceleration at any time t is at, calculate the velocity of the particle after time t . (b) A particle moves along a straight line such that its displacement at any time t is given by s = (t^(3) - 6 t^(2) + 3t + 4)m . What is the velocity of the particle when its acceleration is zero?