Home
Class 12
MATHS
y = x^(sinx).(tanx)^(x)...

`y = x^(sinx).(tanx)^(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=e^(sinx)+(tanx)^(x)

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

If y=x^(tanx)+(tanx)^(x) , then find (dy)/(dx) .

Find the derivative: y = (sinx)^(tanx)+(cosx)^(secx)

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

y=(sinx)^(tanx)+(cosx)^(secx)

Differentiate the following functions w.r.t.x x^(tanx) + (tanx)^(sinx)

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)