Home
Class 11
MATHS
Number of real values of x satisfying t...

Number of real values of `x` satisfying the equation `log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4`,is (a)`0 `(b)` 2` (c)` 3` (d)` 7`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real values of x satisfying the equation log_(2)(x^(2)-x)*log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is (a)0(b)2(c)3(d)7

Number of real values of x satisfying the equation (log)_2(x^2-x)(log)_2((x-1)/x)+((log)_2x)^2=4,i s 0 (b) 2 (c) 3 (d) 7

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

Find the number of real values of x satisfying the equation log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=3

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=3

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to