Home
Class 11
CHEMISTRY
Calculate the Miller indices of crystal ...

Calculate the Miller indices of crystal planes which cut through the crystal axes at (i) (2a, 3b, c) (ii) (a, b, c) (iii) (6a, 3b, 3c) and (iv) (2a, -3b, -3c).

Text Solution

Verified by Experts

following the procedure given above, we prepare the tables as follows:
Promotional Banner

Topper's Solved these Questions

  • THE SOLID STATE - I

    NCERT BANGLISH|Exercise Problems|4 Videos
  • THE SOLID STATE - I

    NCERT BANGLISH|Exercise QUESTIONS (CHOOSE THE BEST ANSWER)|9 Videos
  • PURIFICATION OF ORGANIC COMPOUNDS

    NCERT BANGLISH|Exercise Questions(D. Explain briefly on the following)|5 Videos
  • THERMODYNAMICS - I

    NCERT BANGLISH|Exercise Questions(Miscellaneous)|3 Videos

Similar Questions

Explore conceptually related problems

Find the correct matches (1) a-iii, b-i, c-iv, d-ii (2) a-ii, b-i, c-iii, d-iv (3) a-iii, b-iv, c-ii, d-i (4) a-iv, b-iii, c-I, d-ii

If a ,b ,and c are in A.P., then a^3+c^3-8b^3 is equal to (a). 2a b c (b). 6a b c (c). 4a b c (d). none of these

Simplify : (a - 2b + c)^3 - (a - 2b)^3 - 3c ( a - 2b +c)(a - 2b)

{:|( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) |:} = 3( a+b+c) ( ab+bc+ca)

Write each of the following in the form of ax + by + c = 0 and find the values of a, b and c (i) x = -5 (ii) y = 2 (iii) 2x = 3 (iv) 5y = -3

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If 2a = 3b = 4c , then a : b : c will be

Prove that {:|( a,a+b,a+b+c) ,( 2a,3a+2b,4a+3b+2c),( 3a,6a+3b,10a+6b+3c)|:}=a^(3)

Show that abs((a,b,c),(a-b,b-c,c-a),(b+c,c+a,a+b)) = a^3+b^3+c^3 -3abc.

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1