Home
Class 11
MATHS
Let logc ab=x,loga bc=y and logb ca =...

Let `log_c ab=x,log_a bc=y` and `log_b ca = z`. Find the value of `(xyz-x-y-z)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(a)bc = x, log_(b)ca = y and log_(c)ab = z , then the value of (1)/(x +1) + (1)/(y +1) + (1)/(z+1) is equal to

If x = log_(a) bc, y = log_(b) ca, z = log_(c) ab, then the value of (1)/(1 + x) + (1)/(1 + y) + (1)/(l + z) will be

Suppose x,y,z=0 and are not equal to 1 and log x+log y+log z=0. Find the value of (1)/(x^(log y))+(1)/(log z)quad (1)/(y^(log z))+(1)/(log x)quad (1)/(z^(log x))+(1)/(log y)

Suppose x;y;z>0 and are not equal to 1 and log x+log y+log z=0. Find the value of x(1)/(log y)+(1)/(log z)xx y^((1)/(log z)+(1)/(log x))xx(1)/(log x)+(1)/(log y) (base 10)

If log_(theta)x-log_(theta)y= a, log_(theta)y-log_(theta)z=b and log_(theta)z- log_(theta)x=c , then find the value of (x/y)^(b-c) x(y/z)^(c-a)x(z/x)^(a-b)

If log_(theta)x-log_(theta)y= a, log_(theta)y-log_(theta)z=b and log_(theta)z- log_(theta)x=c , then find the value of (x/y)^(b-c) x(y/z)^(c-a)x(z/x)^(a-b)